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Theory of dynamic permeability and tortuosity in 
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We consider the response of a Newtonian fluid, saturating the pore space of a rigid 
isotropic porous medium, subjected to an infinitesimal oscillatory pressure gradient 
across the sample. We derive the analytic properties of the linear response function 
as well as the high- and low-frequency limits. In so doing we present a new and 
well-defined parameter A ,  which enters the high-frequency limit, characteristic of 
dynamically connected pore sizes. Using these results we construct a simple model 
for the response in terms of the exact high- and low-frequency parameters; the model 
is very successful when compared with direct numerical simulations on large lattices 
with randomly varying tube radii. We demonstrate the relevance of these results to 
the acoustic properties of non-rigid porous media, and we show how the dynamic 
permeability/tortuosity can be measured using superfluid 4He as the pore fluid. We 
derive the expected response in the case that the internal walls of the pore space are 
fractal in character. 

1. Introduction 
The elastodynamic properties of porous media are interesting in part because of 

the possibility of macroscopic relative motion between the fluid and the solid 
constituents. These effects are of prime importance in understanding fourth sound 
in a superfluid/superleak system (Johnson 1980), pressure diffusion through porous 
media (Chandler & Johnson 1981 ; Chandler 1981), slow waves and the consolidation 
transition (Johnson & Plona 1982), elastodynamics of gels (Johnson 1982) as well as 
the acoustic properties of ‘ordinary ’ porous media saturated with ‘ordinary fluids 
(Johnson et al. 1982). These properties are discussed in a review of recent work 
(Johnson 1984). One of the ingredients of the theory of these phenomena, as well as 
being an interesting effect in its own right, is the response of a simple fluid entrained 
in a rigid porous medium and subjected to a harmonic pressure drop across the 
sample; this article is devoted to an understanding of that response, which has been 
the subject of other recent work (Attenborough 1983; Auriault, Borne & Chambon 
1985; Bedford, Costley & Stern 1984). 

In $2 we pose the problem and we show that the relevant response functions, the 
dynamic permeability or dynamic tortuosity , are analytic functions of frequency 
except for singularities on the negative imaginary axis. We also derive the rigorous 
results for the high- and low-frequency behaviour; the distinction between high and 
low frequencies is whether the viscous skin depth, 6 = (27/pfw)4, is small or large 
compared to the sizes of the pores. These results are used in $3 to construct a simple 
model of the response for arbitrary frequency; the parameters in this theory are those 
appropriate to the high- and low-frequency behaviour. As a test of the model we 
compare it with numerical simulations on large lattices constructed by randomly 

f Also at Institute for Advanced Study, Princeton, NJ 08540, USA. 
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distributing tubes of random radii on the bonds thereof. In $4 we demonstrate the 
relevance of our results to cases in which the solid is deformable. We demonstrate 
the power of superfluid 4He acoustics rn a probe of this dynamic response function 
in 95. Section 6 is devoted to dynamic permeability in a porous medium whose 
internal surface is a fractal. 

2. Definitions and general properties 
Consider a homogeneous, isotropic, porous solid with porosity (pore volume 

fraction) 4. We suppose that the solid is not deformable, either because it has a very 
large density, or very large elastic modulii, or both. This solid is saturated with an 
incompressible Newtonian fluid of density pr and viscosity 7. In practice, the results 
we shall obtain will apply to acoustics as long as the wavelength of sound (in the fluid) 
is much larger than the characteristic sizes of pores and grains in the medium, 
ensuring that the fluid may be considered to be incompressible on the scale of the 
pore sizes. We assume that the properties of the fluid are unaffected by its proximity 
to the walls of the solid. We also assume that the fluid has a negligible thermal 
expansion coefficient on any scale ; this assumption ensures that pressure-density 
variations are decoupled from temperature variations (Landau & Lifshitz 1959). 

The porous medium occupies the space 0 < 5 < L, where L is extremely large 
compared to the sizes of the pores. The transverse (y, z )  size of the system does not 
enter into the following, and may be taken as infinite, or as periodic, or as 
impermeable with finite extent. We apply a macroscopic pressure gradient, VPe-i"'t, 
to the sample and follow the linear (i.e. small amplitude) response of the fluid to this 
applied gradient. The response is most conveniently defined in terms of the 
macroscopically averaged fluid velocity v ( w ) ,  which is defined so that #v .RA is the 
amount of fluid crossing a macroscopic surface of area A having an outward normal 
A ;  since the area fraction actually in contact with fluid is q5, v represents a macroscopic 
fluid velocity. Under the stated assumptions v is obviously linearly related to the 
pressure gradient at any frequency 

(2.1 a, b )  

The frequency-dependent tortuosity &(w) is defined in (2.1 a) by analogy with the 
response of an ideal (non-viscous) fluid for which ac" is real-valued and frequency 
independent (Johnson & Sen 1981); it  is a dimensionless quantity. The frequency- 
dependent permeability k(w)  is defined in (2.1 b) by analogy with the steady-state 
(w = 0) definition (Scheidegger 1974). it has the dimensions of area (the conventional 
oil-field unit is the darcy : 1 darcy x cm". Obviausly, the two quantities are 
related to each other: 

iV4 (2.lc) 
a"(") = 7- w )  W P r  

The relationship between &(w) and & ( w )  is roughly analogous to that between the 
dynamic electrical conductivity a"(w) and the dynamic dielectric function t ( w )  
which arise in the electrodynamics of continuous media (Pines 1964, p. 123): 
E(w) = 1 + 4 x i b ( w ) / w .  

We shall be using the results of this article to predict the properties of the 
plane-wave normal modes when the fluid has a finite compressibility; our results are 
valid only for frequencies such that the wavelength is so large that the fluid is still 
to be considered incompressible on a microscopic scale. This is analogous to the use 
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of a long-wavelength dielectric function E(w) to calculate the dispersion relation of 
electroniagnetic modes in a material. In order to calculate the dispersion relations 
we need the continuity equation 

and the constitutive equation 

where K f  is the bulk modulus of the fluid. If we look for plane-wave solutions, varying 
as ei(q'r-wt) to the linearized versions of (2.1)-(2.3), we find dispersion relations which 
can be stated either as 

q(w) = (d"(w))i- (2.4a) 
w 

V,' 
where V, = (K, /pf) i  is the speed of sound in the fluid, or as 

(2.4b) 

where c ( w )  = E(w) K,/q+. Thus, if one is in a frequency range where &(w) is essentially 
real-valued and independent of frequency, the mode propagates non-dispersively 
with phase velocity Vf/& as has been noted previously (Johnson 1980; Johnson & 
Plona 1982). If, on the other hand, one is in a frequency range where E(w) is essentially 
real-valued and independent of frequency, then the normal-mode coordinates follow 
a diffusion equation with a diffusivity b, as has also been noted previously (Chandler 
& Johnson 1981 ; Johnson & Plona 1982). Inasmuch as both possibilities do occur (see 
below), i t  is convenient to analyse the response of the system in terms of &(w) and 
&(w) simultaneously. 

We wish now to consider properties of &@), k(w)  when w is extended to complex 
values. We note that E(w) describes the response of the system to an applied stimulus. 
The causality requirement (Landau & Lifshitz 1960, p. 257), that the system does not 
respond until after the stimulus is applied, automatically guarantees that E(w) is an 
analytic function for all w in the upper half-plane ; E(w) has no branch points or poles 
if Im (0) > 0.  Therefore, &(w) has no zeros in the upper half-plane. Similarly, Z(w)  
is also a causal response function because it describes the induced pressure gradient 
as a response to an imposed fluid flow on the sample ; both &(w) and E(w) have no 
poles, branch points, or zeros in the upper half-w-plane. (The analogous situation in 
electrodynamics is that both the conductivity and the resistivity are causal response 
functions, depending on whether the system is subjected to a voltage source or a 
current source, respectively.) Any singularities in &(u) or E(w) must occur in the lower 
half-plane; in Appendix A we show that, for the particular case at  hand, the only 
singularities occur on the negative imaginary axis. We note that, as an artifact of 
the way it is defined, a"(@) has a simple pole at w = 0; we shall explicitly assume that 
there are no other singularities in either &(w) or E(w) at w = 0. 

We have the further requirement that if a real-valued stimulus, VPe-i"t+ 
VP*e+iw*t, is applied, then the response is also real-valued; this guarantees a 
symmetry in the response functions across the imaginary axis (Landau & Lifshitz 
1960, p. 257) 

Z( -o*) = &*(o), E( - w * )  = E*(o), (2.5a, b )  

where the asterisk signifies complex-conjugation. 
13-2 
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We now consider the limiting cases of low- and high-frequency response. Obviously, 
for low enough frequencies the dynamic permeability approaches its d.c. value : 

(2.6a, b )  

where k, is the real-valued permeability conventionally measured in an experiment 
in which the sample is subjected to a static pressure drop. For fields which are slowly 
varying (in time), the pressure, flow rate, etc. follow a diffusion equation with a 
diffusivity C = k, Kf /q# .  

In the limit of high frequencies, the viscous skin depth, 6 = (2q/pf w);, eventually 
becomes much smaller than any characteristic pore size. From the microscopic Stokes 
equation (A 1), the vorticity, V x u,  obeys the diffusion equation with a diffusion 
length given by 6. This means that any vorticity generated at  the pore walls decays 
to zero as one moves away from the wall into the bulk of the pore (Landau & Lifshitz 
1959, p. 91). Therefore, except for a boundary layer of thickness 6, the fluid motion 
is given by potential flow, up = -Vy?, for some y?. Thus, the flow pattern is identical 
with that for an ideal fluid, except in the boundary layer. For an ideal fluid the 
quantity a” is a real-valued quantity a,, independent of fluid properties (Johnson & 
Sen 1981). This suggests that 

for some p > 0 ;  we shall verify this form (below) and show that p = i. Because of 
the reflection symmetry (2.5) both a, and C are real-valued. 

The significance of this result is that, from ( 2 . 4 ~ )  and the discussion following it, 
the mode is a propagatory one with phase speed V = Vf/(a,)k a, is conveniently 
measured using superfluid 4He as the pore fluid ; i t  is related to the ‘index of refraction 
of the porous medium’ by a, = nz (Johnson et al. 1982, and references therein). 

We also have the result that a, is related to the electrical conductivity of the 
porous medium. Assuming that the porous solid is insulating, the electrical 
conductivity u is proportional to the electrical conductivity of the pore fluid uf by 
u = uf/F, where F is a geometrical factor. It is a rigorous result (Brown 1980), 
apparently known to Lord Rayleigh, that 

a,  = F#. (2.8) 

One can, therefore, experimentally measure this high-frequency acoustics parameter 
by non-acoustical techniques. The equivalence of these two different ways of 
measuring a, has been verified experimentally in a series of fused glass-bead samples 
(Johnson et al. 1982). 

In fact, an exact expression exists relating a, to the microscopic potential-flow 
solution, up(r)  : 

where the integration is over the pore space within a slab of material of thickness 
L and lateral area A, and up(r) = -Vy? is determined by the solution of the 
mathematical problem V2$ = 0,  subject to the boundary conditions ~ ( x  = 0) = 0, 
$(x = L)  = y?L (a constant), and fi.Vy? = 0 at the pore walls. Equation (2.9) can be 
established most simply by considering a related problem, the electrical conductivity 
of an inhomogeneous material having a local conductivity u(r )  which vanishes in the 
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solid region and has a constant value up in the pore space; $(r) may be taken as the 
potential. We consider the identity 

V-($*d?$} = u(r) lV$12+ $*V-(aV$), 

in which the second term on the right-hand side vanishes because of current 
conservation. If we then integrate this identity over a slab of material subjected to 
the applied voltage drop $L, then by Gauss's theorem the left-hand side is simply 
-$:I,  where I is the total current. It is straightforward to solve for the macroscopic 
conductivity of the system from which (2.9) follows because of (2.8). Similar 
expressions have been derived by Bergman and collaborators (Bergman 1979; 
Bergman, Halperin & Hohenberg 1975), but (2.9) is most convenient for our purposes. 

Furthermore, the corrections to the extreme high-frequency limit, the second term 
on the right-hand side of (2.7), can also be related, exactly, to the microscopic 
potential-flow field, up(r), by considering the attenuation of sound in two different 
but equivalent ways. The intensity of a sound wave decays exponentially, on a 
macroscopic scale, as exp ( - 2q"x), where q" is the imaginary part of the wave vector; 
in this high-frequency limit, an expression for q" can be determined by substituting 
(2.7) into ( 2 . 4 ~ ~ ) .  On a microscopic scale, q" can be related (Landau & Lifshitz 1959, 
p. 299) to the exact microscopic velocity field, u(r) : 

(2.10) 

So is the energy flux density; it is equal to the speed of sound, Vp/(a,) t ,  times the 
energy density : 

(2.11) 

where the integration is over the pore space within a slab of material of thickness 
L and lateral area A. We have assumed a sinusoidal time dependence and averaged 
over a cycle. The rate of energy dissipation per unit volume Emech is 

(2.12) 

where we have explicitly assumed incompressibility of the fluid on the size scale of 
the pores (Landau & Lifshitz 1959, p. 299). As we have shown above, the fluid motion 
is that of potential flow, u kc up = -V$, except in a boundary layer of thickness 6 
at the pore walls, where the velocity goes to zero. We divide the integration in (2.12) 
into two parts, the bulk of the pore space and the boundary layer. The former gives 
a contribution to (2.12) which can be shown to be equal to an integral over the 
bounding surface of this region (Landau & Lifshitz 1959, p. 54) : 

(2.13) 

which is independent of frequency; obviously a negligible error is introduced by 
extending the surface of integration in (2.13) to be that of the actual pore walls. To 
evaluate the contribution to (2.12) from the boundary region we note that since 6 
is arbitrarily small at high enough frequencies, the walls of the pores appear to be 
flat in the region where the velocity goes from zero at the wall to the value up in the 
pore region. Thus, the velocity field in this region is (Landau & Lifshitz 1959, p. 91) 

up) = uP(rw) [I  -eiKP], (2.14) 
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where B is a local coordinate measured from the pore wall at  position rw into the bulk 
of the pore and K = (iwpf/q)? = (1 +i)/6 is the shear wave vector at  frequency w.  
Therefore, the contribution of this boundary region to (2.12) is evaluated by 
substituting (2.14) into (2.12): 

(2.15) 

where the integration is over the boundary walls of the pore space; (2.15) clearly 
dominates (2.13) at high frequencies. Combining (2.4a), (2.7), (2.10), (2.11), (2.12), 
and (2.15), we find that p = and we have an explicit expression for C. In fact (2.7) 
can be more clearly written as 

(2 .16~)  

(2.16 b)  

where the parameter A has the dimensions of length and is given by 

The integration in the numerator of (2.17) is over the walls of the p o r q a i n  interface; 
that of the denominator is over the pore volume. Thus 2/11 is essentially the 
surface-to-pore-volume ratio of the pore-solid interface in which each area or volume 
element is weighted according to the local value of the field up. (The motivation for 
defining A in this way will become apparent.) Equations (2.16) and (2.17) are exact, 
new results, applicable to any porous medium. Both a, and A are independent of 
fluid properties and each is a characteristic parameter of the given porous medium; 
in principle, each is determined from the solution of the same mathematical problem, 
using (2.9) or (2.17). 

We have already discussed how a, is measured; A can be deduced from a 
measurement of the attenuation of a sound mode in the high-frequency limit. It is 
convenient to express the attenuation in terms of the specific attenuation in per cycle, 
1/Q = 2q"/q', which is derived from ( 2 . 4 ~ )  and (2.16): 

. l d  
lim - = -. 
,,Q A 

(2.18) 

In fact, A has already been measured in a few samples of porous solids using superfluid 
4He, which we shall discuss in $5. 

We conclude this section with a very simple example of an exactly solvable model 
which illustrates the general properties explicitly. The porous medium consists of 
fluid-saturated cylindrical tubes of radius R whose axes form an angle 9 with the 
direction of the applied pressure gradient. The solution is given in different, but 
equivalent, forms by different authors (Bedford et al. 1984; Biot 1956a, b ; Jayasinghe, 
Letelier & Leutheusser 1974; Zwikker & Kosten 1949). We need the volume flow rate 

through a tube of length L having an imposed sinusoidally varying pressure drop 
A P :  

(2.19) 
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where the Ji are Bessel functions. This expression has been verified experimentally 
in U-tube oscillations (Jayasinghe et al. 1974). From (2.19) it is straightforward to 
deduce the dynamic permeability/tortuosity : 

(2 2 0  a )  

(2.20 b) 

By inspection, a"(@) and E(w) have singulsrities only on the negative imaginary axis, 
and they obey the reflection symmetry (2.5); by considering the high- and low- 
frequency limits we can relate the general parameters to the specific: 

k, = @R2 cos28, A = R. 
1 a, =- 

COsa e (2.21a, b,  c) 

Equations (2.21a,b) are given in Scheidegger (1974); (2 .21~)  is obvious from the 
definition (2.17) because up(r) is constant in each tube. This was the motivation for 
defining A in the way that we did. 

In general, the parameters a,, k,, and A are unrelated and independently 
measurable, but if one can model the response of the system as a set of non-inter- 
secting tubes canted at an effective angle 8, one may expect the parameters to be 
related to each other, at least approximately, by (2.21 u-c) : 

(2.22) 

(If the porous medium can be modelled as canted slabs of fluid, for which A is equal 
to the width of the slab, then the 8 in (2.22) is replaced by a 12.) A relationship 
equivalent to (2.22)' or modified by the introduction of dimensionless factors, is 
implicit in all previous approaches to this problem. For example, in the notation of 
Biot (1956a, b) the left-hand side of (2.22) is equal to #/St, where 8 is the 'structural 
factor' and f is the 'sinuosity factor'. In the notation of Attenborough (1983), the 
left-hand side of (2.22) is equal to nz/5 where n is the 'dynamic shape factor' and 
5 is the 'static shape factor'. If one makes reasonable guesses of the values of these 
dimensionless parameters, one is then able, in effect, to deduce values of A in terms 
of the other parameters $, k,, and a,. In the present article, we wish to emphasize 
that all parameters in (2.22) are independently measurable and thus its approximate 
validity can be directly tested (see $5). 

3. Model for frequency dependence of dynamic permeability 
In this section we develop a model, in terms of simple analytic functions, for the 

frequency dependence of a"(w). We require that the model satisfies the general 
properties of $2 and that it depends only on the four parameters, a,, k,, A, and $ 
which are well defined for any porous medium ; we do not assume that these four are 
related to each other by (2.22). Let us consider Z(w) in the form 

a"@) = a,+- F ( w ) ,  
wko Pr 
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where, because of (2.6) and (2.16) respectively, F ( o )  has the following properties: 
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F(0)  = 1, (3.2a) 

2k0a, [ -FJ 
lim F ( o )  = - - , 
w m  4 

The simplest possible model for F ( o )  is 

. 4aZ, ki pr w}i 
{ qAa$2 ’ 

F(w)  = 1-1 

Thus, our model for the dynamic permeability/tortuosity is 

(3.2b) 

(3.3) 

(3.4a) 

(3.4b) 

Equations (3.4a, b) are the central result of this paper. We wish to compare the 
accuracy of this model against other, known, results. First, we consider a hypothetical 
porous medium in which the pores are circular cylindrical tubes of radius co canted 
at  an angle 8 to the imposed pressure drop; the response is given by (2.20b) from 
which it is simple to deduce the entity F(w) ,  defined by (3.1) : 

- 2izJ1 (4 (iz);) 
FCCT(w) = 2(iz)t J0(4(iz):) - J1(4(iz)t) ’ (3.5) 

where x = ciprw/16q. For this particular geometry, the relations (2.22) hold so that 
(3.3) becomes P(w)  = (1-ix);. In  figure 1 we compare the fractional difference, 
2[FccT(x) - F(z)]/[FccT(z) + P(z)] as a function of z. By construction this difference 
is identically zero at high and low frequencies and we see that there is only a 10% 
difference at most in the middle-frequency range. Equation (3.5) or, equivalently, 
(2.20), is widely used, without particular justification, in the study of acoustics in 
porous media (Stall 1974) ; we maintain that essentially any function which satisfies 
the general properties of $2 will do just as well as any other, in particular (3.4) or 

Next, we consider a simple cubic lattice of lattice constant I on which we randomly 
distribute tubes between the nodes thereof using some distribution function P(r) .  As 
an aside, if all the tubes are the same, P(r) = 8(r-co),  then the dynamic permea- 
bility/tortuosity is the same as for a collection of straight tubes, (2.20) with 6 = 0, 
except that only one third of them are conducting, i.e. 

(2 20). 

We note that a, = 3 independent of the tube size and, in fact, we shall consider the 
value of a, to be a measure of the disorder in the system. We have already 
demonstrated the validity of our model compared to (3.6), as was shown in figure 1. 

For cases in which P(r)  is non-trivial, we have solved for the dynamic permeability 
by direct simulation on large (10 x 10 x 10) lattices and we have averaged over many 
(100) realizations as described elsewhere (Koplik 1981) ; at any frequency, and for any 
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100 

10-q I , , , , , , , I  , , , t l l , l l  I , , I LLL 

10-1 100 10' 10' 
Frequency (dimensionless) 

FIQURE 1. Comparison of the fractional difference, 12[FccT-q/ [FccT+ql ,  as a function of 
dimensionless frequency, x = ( p o / i )  [%, k0/(Ag5)]8. FCCT is that appropriate to circular cylindrical 
tubes of radius R, equation (2 .20~~);  F is the proposed model of the present article, equation (3.3). 

individual tube, the fluid conductance is given by (2.19) in terms of the pressure 
difference between twdconnected nodes. The d.c. permeability k, is determined by 
a separate simulation for w = 0 ; P = [1A/8$] A P  for each tube. The porosity is simply 
q5 = 3JnreZP(r) dr/P. As indicated in $2,  a, and A are determined from a separate 
simulation of the electrical conductivity problem in which the current in a given bond 
is related to the voltage difference between the nodes by 

(3.7a, b )  

Because of (2.8), a ,  is simply related to 9, the equivalent bond electrical conductivity 

( 9 )  ( 3 . 8 ~ )  
of the random network, by 

a, = 3:, 
9 

where ( 9 )  is simply the arithmetic mean of the conductances 

( 9 )  = I d r )  dr. (3.8b) 

Equations (3.8a, b) follow directly from (2.8) because F = Z/g. A very 'tortuous' (i.e. 
disordered) network is one in which the effective conductivity is much smaller than 
the mean, a, % 3. Having solved for the voltages V, at each node we can very simply 
evaluate A from (2 .17):  

What sort of distribution P(r) ought we to consider? Clearly we would like one for 
which a, is appreciably larger than 3. In  a previous simulation of the electrical 
conductivity using a rectangular distribution of conductances - 1<g<5OOo 

= kt otherwise, 
(3.10) 



388 D .  L. Johnson, J .  Koplik and R. Dashen 

it  wa,s found that 9 = 2182 for the simple cubic lattice (Koplik 1981); this gives a 
value for the tortuosity a, of 3.44, which is not very different from that for an ordered 
lattice. In order to increase the disorder we wish to use a distribution which 
emphasizes the smaller conductors; to be specific, we consider the distribution 

(3.11) 

The porosity of this network is 4 = 6n(~,/1)~.  We find the d.c. permeability to be 
k, = (0.41 f0.05) (C;/Z)~. (The error bars are statistical.) From the simulation of the 
electrical conductivity we find a, = 7.94+ 0.47 ; this value is considerably larger than 
those actually measured on a collection of fused glass-bead samples (Johnson et al. 
1982; Wong, Koplik & Tomanic 1984) for which 10% < 4 < 35 %, giving us 
confidence that this simulation represents an appreciably disordered system. From 
the same electrical simulation we find A = (0.93 f 0.10) c,. The relatively large error 
bars in A are systematic ; the value of A depends on whether the conductors adjacent 
to the bus bars are included in (3.9) or not. This can be understood as follows. In 
principle, for an extremely large sample, (3.9) is independent of the thickness of the 
slab over which the summation is taken. Suppose the summation is limited to include 
only those conductors which are connected to the bus bars. For those conductors the 
fluctuations in the voltage drops, V, - 5, are smaller than for conductors in the bulk 
(because the end connected to the bus bar cannot fluctuate). If we completely neglect 
fluctuations in the voltage drop, then A = 2c, for the distribution (3.11). Therefore, 
inclusion of the end conductors tends to increase the value of A over that obtained 
without their inclusion; this effect is reflected in the error bars that we quoted for 
A, above. We have found that this effect does diminish as the sample length is 
increased. 

Before we compare these numerical results against the model (3.4), we should like 
to make two observations about the values of the parameters themselves. (a )  The 
value of A is considerably smaller than that deduced from the specific area; we find 
2 / A  = 2.15/c0 whereas the surface-to-pore-volume ratio is l/co. Evidently the 
weighting procedure implied by (2.17) substantially favours the smaller tubes. (b) 
As regards the approximate validity of (2.22) with the values determined above, we 
find 8a,ko/4A2 = 1.6 instead of 1.0. One can judge for oneself whether the glass is 
half full or half empty. 

As a further check of (2.22) we have considered other distributions which also tend 
to emphasize the smaller conductors. For example, simulations based on the 
divergent distribution {P( r )  = a(c,r)a: 0 < T < c,}, for which $ = (3s/5) (c,/Z)~, 
give k, = O.0085c~/l2, a, = 6.2, and A = 0 . 3 3 ~ ~  from which it follows that 
8a, k0/4A2 = 2.0 for this distribution. For this distribution, too, we find the value 
of 2 / A  ( = 6.0/c0) to be much larger than the surface-to-pore-volume ratio ( = 3.33/c0). 
We conclude that it will be quite difficult to find any probability distribution P(r) 
for which (2.22) is violated by more than an order of magnitude. In fact, i t  is 
instructive to consider an arbitrary distribution of tubes having different radii (same 
length) connected in series and in parallel. We find that for tubes connected in parallel 

Thus 
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FIGURE 2. (a) Absolute value, in units of c;/P, and (b) plpse of the dynamic permeability of a random 
network of tubes distributed on the bonds of a simple cubic lattice using the exponential probability 
distribution of tube radii. The dimensionless frequency is wpc:/a. The points are the results of direct 
simulations. The solid curves are the predictions of the model dynamic permeability, equation (3.3). 
The input parameters for the model, k,, am, and A, were determined by means of separate 
simulations, aa explained in the text. P(r) = (l/co)/e-r'co; q5 = 61t(e,/Z)~; k, = 0.41c{/Z2; a, = 7.9; 
n = O.89Co. 
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where M = 8a, k,/$A2. Similarly, for tubes connected in series 

D. L. Johnson, J. Koplik and R. Dashen 

W2) a, = (R-2)  (R2) ,  A = - ( R-3) ’ 
$ k -  

O -  8(R2)  (R-4)’ 

which implies (R-3)2 
(R-4) (R-2)’ 

M =  

Although the two expressions for M are different, i t  is clear that in the parallel case 
all the moments are dominated by the largest tubes, with the result that 1M+ 1 and 
in the series case all the moments are dominated by the smallest tubes, with the result 
that, again, M+1. We have not been able to find a striking counterexample to 
M x 1 ,  which is surprising since at  some point the analogy between potential flow 
and Poiseuille flow must break down. 

In figure 2 (a, b) we plot the magnitude and phase, respectively, of the dynamic 
permeability deduced from the numerical simulations using the exponential distri- 
bution. We also compare these results with the predictions of the simple model, (3.4). 
Once again, we see that the model dynamic permeability agrees very well with that 
calculated directly; there are no adjustable parameters in the model, all of them 
having been calculated independently. 

We hasten to point out that we have invented a model I(@) which correctly matches 
the frequency dependence of the first two leading terms of the exact result for high 
frequencies (2.16), but only one term for low frequencies (2.6). Thus if we expand 

(3.12) 
about w - 0 we have 

&w)  = k, + iw/3+ O(w2).  

The point is that our model (3.4), may very well yield values of /3 that differ 
substantially from the exact values. We have been unable to find any rigorous 
theoretical statements that can be made about this coefficient. However, /3 appears 
not to be directly measurable in any experimental situation, except as a correction 
to the d.c. behaviour. To some extent this has happened in the experiments 
considered by Attenborough (1983); it  would be interesting to compare the low- 
frequency behaviour of these systems with the predictions of our model, (3.4), using 
values of A deduced from superfluid 4He experiments ($5, below). 

Finally, we consider the case in which P(r) corresponds to classical bond percolation 
theory (Kirkpatrick 1973): P(r) = p8(r-co)+(l  -p)S(r) .  A fraction p of the bonds 
are occupied by tubes of the same radius c,, and the rest are empty. It is clear that 
the dynamic permeability at any frequency is simply related to (2.20b) by a 
geometrical factor independent of frequency : 

(3.13) 

where G ( p )  is dependent only on p (for a given lattice type) and has the property that 
G( 1) = 1 and G vanishes whenever p is less than the percolation threshold. Inasmuch 
as we have already seen that the simple model (3.4), agrees well with (2.20) for a single 
tube, we automatically have good agreement for the percolation problem, too, aa long 
as a, and k, are scaled with G ( p )  so that they take on their correct values. We note 
that any p, A = c,, as is obvious from (3.9). Therefore, the relationship 
8a, k,/$A2 = 1 holds for arbitrary p. 

The conclusion of this section is that we have found a simple analytic expression 
for the frequency dependence of the permeability/tortuosity in terms of the 
well-defined (and experimentally measurable) high- and low-frequency parameters. 
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The model is the rough equivalent of the Debye model for relaxation phenomena 
in dielectric properties (Frohlich 1949). Compared with direct simulations on 
large networks, the model works well for a narrow distribution of tube 
radii, P(r) = 6(r-co), a wide distribution of tube radii, P(r) = c;’ exp ( -r/c,), 
and the bimodal distribution corresponding to percolation theory, 
P(r)  = p6(r-c)  + (1 -p) 6(r). We conclude that unless the distribution is pathological 
(having a divergence at r =0)  the model will continue to given an accurate 
description of the frequency dependence of the permeability. It is likely that other 
simple forms will work as well as the one considered here. 

We also conclude, based on direct calculations of the parameters themselves, that 
the A parameter is closely related to.the d.c. permeability k,, through (2.22), at least 
for random lattice networks; the relationship (2.22) may be violated by a factor of 
2 but not, apparently, a factor of 10. This also seems to hold true for the available 
experimental data, which we discuss in $5. 

4. Relation to acoustics in deformable porous media 
In  this section we relax the assumption that the solid is not deformable and we 

consider the relevance of our results to the acoustic properties of porous media 
generally. It has become clear that the Biot theory (Biot 1956a, b, 1962a, b ;  Biot & 
Willis 1957) is the appropriate basic theory for such systems, although, of course, 
there are porous media that exhibit effects which are dominated by mechanisms 
outside the Biot theory; the equivalent statement for non-porous media is that 
standard elmticity theory, based on Hookian springs between atoms, is the appro- 
priate basic theory of acoustics therein, although there are many mechanisms for 
attenuation and dispersion in real systems which lie outside standard elasticity 
proper. The basic idea of the Biot theory is that the average displacement of the fluid, 
V(r,t), and of the solid, u(r,t) are followed separately and on an equal footing, 
although the two motions are coupled. As a consequence, two distinct longitudinal 
modes at all frequencies are predicted, a ‘fast’ wave and a ‘slow’ wave; although 
the former is propagatory at all frequencies, the latter is diffusive at low frequencies 
and propagatory at high. The theory has been successfully applied to such disparate 
systems as fourth sound in a supeduid/superleak system (Johnson 1980), pressure 
diffusion through porous media (Chandler & Johnson 1981), slow waves and the 
consolidation transition (Johnson & Plona 1982), elastodynamics of gels (Johnson 
1982), as well as the acoustic properties of ‘ordinary’ porous media saturated with 
‘ordinary’ fluids (Johnson et al. 1982). Especially for these latter systems, the Biot 
theory has tremendous predictive power in the sense that a given sample can be 
characterized by direct and independent measurement of most of the input parameters 
which are then used to predict the speeds and attenuations of the modes, regardless 
of what pore fluid is used. Aside from the densities and moduli of the fluid and solid 
constituents, the parameters are the porosity #, and the moduli of the skeleton frame 
Kb and N, which can be deduced from the measured speeds of the dry material. The 
strictly low-frequency properties are dependent on the value of the permeability k,, 
and the strictly high-frequency properties are dependent on the value of the 
tortuosity a,. The distinction between high and low frequencies is whether the drag 
that the solid exerts on the fluid is dominated by inertial or by viscous effects, 
respectively. The predicted velocities have been verified experimentally in both 
limits. These and other properties of the theory are reviewed elsewhere (Johnson 1984 ; 
Stoll 1974). 
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The missing ingredient is a simple description of the viscous/inertial drag effects 
which can be expected to be valid over the entire frequency range in terms of a few 
independently measurable parameters characteristic of a given sample. In  the Biot 
theory, these effects are described in terms of the relative motion between fluid and 
solid; the equation of motion for the fluid constituent can be written (Johnson & 
Plona 1982; Johnson 1984) 

a w  a2u (4.1 a) azu 
$pr at2 = P;&) [--%I+ (spatial derivative terms), 

(4.lb) 

The quantity &(w) appearing in (4.1 b )  is independent of the elastic properties of the 
two constituents and is, in fact, identical with that defined in (2.1 a). This can be seen 
by considering the Biot equations in the limit that the skeletal frame moduli, Kb and 
N, are much larger than the bulk modulus of the fluid, so that the solid does not move 
(u = 0); in this limit, (4.la,b) reduce identically to (2.la). 

The implications are that the general properties of &(w) deduced in $2 automatically 
apply to the acoustics of porous media generally, via the Biot theory. Moreover, we 
have derived a simple theory, (3.4a), which gives a good description of Z(w)  in a 
substantially disordered system over the entire frequency range, as was shown in 
figure 2(a,b). One now has the confidence, once values for a,, A, k,, and $ are 
measured, that there is a reliable means of calculating the acoustic properties over 
the full frequency spectrum. 

The conventional approach has been to treat the pore space as if it were equivalent 
to circular tubes of some effective radius (Biot 1956; Stoll 1974), i.e. by means of 
(2.20) or equivalently (3.5). The effective tube radius is derived from the measured 
permeability by means of (2.22). The argument of the Bessel functions is then 
modified by multiplicative ‘structure factors’ nz/s or P / S (  which, in the language 
of the present article, allows for a value of A which does not satisfy (2.22). Although 
such a procedure may seem to be an ad hoc one, in fact the set of free parameters 
is still four in number and, moreover, the specific functional form (2.20) is numerically 
quite similar to, say, the present model, (3.4a,b), for real-valued frequencies. The 
simple reason is that essentially any function satisfying the conditions of $2 will agree 
with any other function for real w. Indeed, it was noted long ago that F(w) for the 
case in which the pores are modelled as flat slabs, also agree quite well with (2.20) 
for real o (Biot 1956). Obviously, all these formulae are very different for w on the 
negative imaginary axis, where they have singularities. 

5. Superfluid acoustics as a probe of porous media 
Below a temperature TA = 2.17 K, liquid 4He undergoes a transition to a new 

phase, He 11, which behaves as a miscible mixture of a normal fluid having a viscosity 
7 and a density p,(T), and a superfluid fraction having exactly zero viscosity and 
a density ps(T) ;  obviously p,(T)+ps(T)  = p. The properties of He 11, and especially 
the two-fluid equations of motion, are described simply by Tilley & Tilley (1974). The 
acoustic properties are reviewed by Rudnick (1976) and dissipative effects are 
discussed quite clearly by Putterman (1974). For this section only, we presume 
familiarity with the contents of these texts. The extraordinary success of the 
macroscopic two-fluid equations of motion in describing the bulk properties of He I1 
was established in large measure by means of experiments using 4He in porous media 
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and other confined geometries. It is the purpose of this section to turn this situation 
around and establish the use of superfluid acoustics as a powerful probe of porous 
media, specifically as a means of measuring &w).  

As in 92 we assume that the 4He is describable by its macroscopic equations of 
motion, negligibly affected by proximity to the walls of the porous medium. We also 
continue to neglect the thermal expansion coefficient of the 4He. The linearized 
microscopic equations of motion are (Tilley & Tilley 1974; Putterman 1974) : 

pN at auN - - -@ V P - ~ ~ ~ V T - ~ V  x v x uN, 
P 

(5.1 a) 

(5.1 b) 

(5.1 c) 

(5.ld) 

where uN(r, t )  and us(r, t )  are the velocity fields of the normal and superfluid fractions 
respectively, T is the temperature, P is the pressure, and s is the entropy per unit 
mass. In  (5.1) we have included the dissipative effects of the normal-fluid viscosity, 
but have neglected the three 'second' viscosities as well as the thermal conductivity 
(see below). In  the absence of a porous medium, there are two normal modes in He I1 : 
first sound, a pressure-density wave whose speed is c: = aP/ap (approximately 
240 m/s), and second sound, a temperature-entropy variation whose speed is 
ci = ( ps s;/pN) aT/as (approximately 20 m/s). The attenuation of these modes in the 
bulk is governed by the neglected dissipative terms, as well as by q.  In  a porous 
medium whose pore sizes are much smaller than the wavelengths of first or second 
sound, these attenuation mechanisms are negligible compared to that caused by 
viscous shearing of the normal fluid inside each pore ; for our purposes, we are justified 
in neglecting them. 

At the internal walls of the porous medium, the boundary conditions are that the 
tangential component of the normal fluid must vanish, U, x ii = 0, there is no 
momentum transfer into the solid, ( ps us +pN u,) R = 0, and there is no entropy flux 
into the solid, p s O ~ , * A  = 0. This last is not true for a solid with a finite thermal 
conductivity, but i t  introduces a negligible error, as we show in Appendix B. On the 
scale of the pore sizes, the equation of motion for the superfluid fraction is 

( 5 . 2 ~ )  

(where V p  = ( ps/p) VP-ps  so V T )  subject to the boundary condition 

u,.a = o (5.2b) 

at the walls of the pores. Mathematically, this is identical with the equations for an 
ideal fluid occupying the pore space; therefore, the macroscopic flow rate of the 
superfluid fraction is given by 

(5.3) " C Q P s a t -  3% - -vp, 
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in which us is related to us in the same way as v is related to u in $2. Note that a, 
is identical with that in (2.7). Similarly, the microscopic equation of motion for 
the normal-fluid fraction is 

( 5 . 4 ~ )  auN - PN - - -vX+Tv x v x I(N 
at 

(where Vx = ( p N / p )  VP+ps so VT), subject to the boundary condition 

UN = 0 (5.4b) 

on the pore walls. This obviously maps onto the equations for a Newtonian fluid and 
so the macroscopic response of the normal component is 

(5.5) 

The dynamic tortuosity entering (5.5) is the same as that defined in (2.la) for a 
hypothetical Newtonian fluid of viscosity 7 and density pN(T). 

It is now straightforward to solve for the normal modes of He11 in a porous 
medium, using (5.3) and (5.5) : 

- Z((O)pN - - -vx. 
at 

where d = Ps - (&(w)c;L+a,ci)+- PN (a,c:+Z(w)ci). 
P P 

Following Baker (1985, 1986), we observe that (pN/ps)  (C:/C~) < 0.01 for allp and T. 
Therefore, to better the 1 % accuracy the normal modes simplify to 

It is clear that measurements of the speed and attenuation of these modes enable one 
to directly deduce Z(w)  although the existing data are either for the strictly 
high-frequency or strictly low-frequency limits. Let us consider these two limits 
implied by (5.7) and (5.8). 
High frequencies. At sufficiently high frequencies (2.16) applies and so the dispersion 

in the phase velocity and the attenuation implied by (5.7) are 

where S = (27/pN w)t .  Similarly (5.8) gives 

( 5 . 9 ~ )  

(5.9b) 

(5 .10~)  

(5.10b) 
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In  this limit the modes are essentially first and second sound but with speeds reduced 
by the factor (a,); because of the tofiuous, winding pore space. Obviously, (5.9b) 
and (5.10b) are the analogues of (2.18) for HeII.  The temperature and frequency 
dependences in (5.9) and (5.10) have been reported by Singer et al. (1985) for five 
samples of fused glass beads. Baker (1985) has also made similar measurements on 
a set of three samples of sintered bronze spheres. In particular, values of the 
parameter A ( r  in the notation of Singer et al. and (8 /4  (ka/P)i in Baker's notation) 
have been measured. 

Baker (1986) has independently measured 4, a,, k, on his samples. He has 
experimentally deduced values for A from measurements of &-. Does (2.22) hold for 
those samples? In our notation the quantity 8a, k,/(#A2) of (2.22) is a2/8 in his. From 
table 1 of Baker (1986) P/8 varies from 1.4 to 2.5, which is comparable with the values 
that we found from the network simulations in 93 (i.e. 1.6 and 2.0). This, then, is 
direct experimental evidence that the A parameter is closely related to d.c. per- 
meability k,, in real porous media. 

Low frequencies. In  this limit, the mode corresponding to first sound at high 
frequencies, (5.7), has a speed and attenuation given by 

(5. 1 1 a )  

(5.11 b )  

This is fourth sound, a mode that exists whenever the normal component is clamped 
(uN = 0) by virtue if its viscosity. It was first observed by Shapiro & Rudnick (1965). 
This crossover from first sound at high frequencies to fourth sound at low was 
predicted by Shapiro & Rudnick who did not, however, present a complete description 
of the effects of the porous medium, i.e. their treatment is equivalent to the 
assumption that g(o) = k, is constant for all frequencies. Kriss (1969) and, more 
recently, Tam & Ahlers (1985) have experimentally verified the temperature and 
frequency dependence of (5.1 1 b) though they did not report independent measure- 
ments of k, (which is expressed as k,/# = ae/8, in their notation). 

In this low-frequency limit, the second sound mode becomes diffusive in character, 
q$ = iw/D, with a diffusivity given by 

(5.12) 

Like second sound this is essentially a temperature/entropy wave with a small 
admixture of pressure/density . Theoretical descriptions of this mode have been 
presented by others using simplifying assumptions about the geometry of the porous 
medium (Pollack k Pellam 1965; Shapiro & Rudnick 1965; Weichert & Meinhold- 
Heerlein 1970). This mode wm unambiguously observed by Weichert & Passing (1982) 
in plane-parallel capillaries of width 2d for which k,/# = d2/3. In  a porous medium 
it ought to be straightforward to observe this mode using techniques similar to those 
of Chandler (1981) but with second-sound transducers. 

We stress that the parameters a, and k,/#,  which determine the speed and 
attenuation of fourth sound, aa well &s the diffusivity of the thermal wave, are easily 
measurable using standard techniques of electrical conductivity and fluid-flow 
resistance (Baker 1985, 1986). In  addition, a, determines the high-frequency speed 
of first sound (Johnson et al. 1982) as well as that of second sound (Singer et al. 1984). 
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To summarize this section, we have seen that superfluid 4He enables one in principle 
to measure &(w) in a direct manner on a given sample; in practice, measurements have 
been limited to either the strictly high- or strictly low-frequency limits. There are 
four properties of He I1 which make it a powerful probe of acoustics in porous media : 

It is several orders of magnitude more compressible than most solids, making 
the rigid-frame approximation accurate to 1 part in lo4, typically (Johnson 
1980). 
The normal-fluid fraction pN/p can be made to be arbitrarily small simply by 
going to a low enough temperature; below 1.2 K, the normal-fluid fraction is 
less than 1 %. This enables a direct acoustical measurement of a, from ( 5 . 9 ~ )  
or (5.11a), which are the same. 
Although the viscosity of the normal component 7 is not very temperature 
dependent, the effects of viscosity can be varied considerably by changing the 
temperature ; because the normal-fluid fraction decreases from unity to zero, 
the viscous skin depth (27/pNw)4 diverges at  low temperature. 
Since there are two distinct sound modes in HeII,  (5.7) and (5.8), one can 
extend the spectral range simply by switching from a first-sound transducer 
to a second-sound transducer; in a typical resonant-cavity experiment the 
wavelength is fixed by the cavity dimensions, so that a change from first to 
second sound changes the resonant frequency by a factor of ten (i.e. c,/c,). 

6. Fractal pore surfaces 
A recent article (Katz & Thompson 1985) provided compelling evidence from direct 

scanning electron microscope images that the pore-grain interface in many 
sedimentary rocks is an object having a fractional dimensionality greater than two 
over a range of lengthscales from 100 to 100 pm. Earlier work using gas adsorption 
data indicated a similar result but was limited to much smaller lengthscales (Avnir, 
Farin & Pfeiffer 1984). The basic idea of a fractal surface is that if one measures the 
area using a ‘yardstick’ of length 8, the area will diverge as S shrinks to zero according 
to a power law, A a where d (> 2) is the fractal dimension (Mandelbrot 1982). 
In the case at  hand, the yardstick is the viscous skin depth 6 = (27/pf w y .  As a point 
of information, the viscous skin depth in water at 1 MHz is 8 = 0.6 pm ; the viscous 
skin depth of the normal component in He I1 at, say, T = 1.8 K andf= lo4 kHz, is 
6 = 0.9 pm. These values are in an experimentally accessible range for probing the 
pore structure of the sedimentary rocks considered by Katz & Thompson. In  this 
section we consider the implications of a fractal poregrain interface on the dynamic 
tortuosity. We assume, however, that the pore volume itself is three-dimensional. 

Consider the high-frequency limit (2.16), which was derived under the assumption 
that the bounding surface of the fluid appears flat locally if the viscous skin depth 
is small enough. If, however, the surface is a fractal object, then as 6 decreases with 
increasing frequency, the fluid ‘sees’ an increasing surface area, as indicated 
schematically in figure 3. The parameter A presumably decreases with decreasing 6: 
2 / A  - S a - d ~ .  Under these assumptions, (2.16) becomes 

where A, has the dimensions of length and a, is related, as before, to the electrical 
conductivity. We note that d, is not really the fractal dimension of the pore surface; 
(6.1) describes a dynamic process and it is unlikely that the exponent should be simply 
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RQWRE 3. Schematic of a hypothetical fractal surface separating the fluid region (white) from the 
solid (black). With increltsing frequency the viscous skin depth decreltses and the boundary between 
potential flow (in the interior of the boundary) and Poiseuille flow effectively 'sees' an increasingly 
larger surface area. The solid line is for a considerably higher frequency than the dashed. Copyright 
by B. B. Mandelbrot, plate 231 in his Fractal Geometry of Nature (W. H. Freeman, New York, 
1982), reprinted with permission. 

related to  static, purely geometrical properties, cf. the definition of A (2.17). Since 
up becomes small within the peak height of the fractal surface, we anticipate 
2 < d ,  < d .  

It is straightforward to work out the implications for the normal modes using (6.1).  
The high-frequency limit for the specific attenuation is, similarly to (2.18), 

From the results of the last section, it is clear that these effects are most easily seen 
using HeII.  In this high-frequency limit, then, the specific attenuation of first and 
second sounds are obtained by substitution of (6.1) into (5.7) and (5.8): 

(6.3a) 

(6.3b) 

In principle, the dynamic dimensionality of the poregrain interface d, can be 
deduced from either the temperature or frequency dependence of the attenuation of 
first and/or second sound in a porous medium. 

What, then, might one expect for the full frequency dependence of the dynamic 
tortuosity? We note that, since we assumed that the pore volume is three-dimen- 
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sional, the d.c. permeability is well defined and measurable; (2.6a,b) still hold. 
Repeating the derivation of $3, but with (6.1) instead of (2.16), we conjecture that 
the dynamic tortuosity of such a system may be described by 

where B is related to A, in order that (6.4) satisfies (6.1). 

We are grateful for several useful discussions with H. Kojima, E. J. Hinch, and 
S. Baker. 

Appendix A. Singularities. of response functions 
We consider the response of a system defined in $2. Specifically, we wish to show 

that &(w) and E(w) are analytic functions of w everywhere in the complex plane except 
for values of w on the negative imaginary axis. We assume that the sample occupies 
the space 0 < x < L and its pore space is saturated with an incompressible Newtonian 
fluid; the linearized equations of motion are (Landau & Lifshitz 1959, p. 49) 

where 

(a comma denotes differentiation and summation over repeated indices is assumed). 
The microscopic velocity field u(r, t )  is related to the macroscopic v by considering 
the flow through an area A over which v is slowly varying: $v*RA = Ju-AdA. We 
shall need the following (simple to verify) identity : 

Next, we prove a theorem about the unforced oscillations in the system : Consider 
solutions to (A 1) in which all quantities have the same sinusoidal time dependence, 
e.g. u(r, t )  = ~ ( r )  e-iwt subject to the boundary condition 

J ntuFG,dS = 0 ,  

where the integration is over the multiply-connected boundary surface of the fluid 
including the planes x = 0 and x = L; R is a unit vector normal to that surface at 
each point. (This is automatically guaranteed for the internal boundaries at  the 
fluid-solid interface because u = 0. Equation (A 3) is a statement about the bound- 
aries of the fluid at x = 0 and x = L.) This boundary condition guarantees that no 
power is entering the system. 

THEOREM. All solutions to the linearized Navier-Stokes equations subject to the 
boundary condition ( A  3 )  have the property that w is on the negative imaginary axis. 

Proof. From the equation of motion (A 1 a, b) we have 
r r 

-iwp, u:u,dV = u:G,,,dV, J J 
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where the integration is over the volume actually occupied by fluid in the region 
0 < z < L. Because of the identity (A 2), (A 4) becomes 

-iwp, ju*udV = j{utq,},,dV-+q JlQl'dV 

= jnIuTq,ds-$q  jIQIPdV. (A 5 )  

Therefore, because of (A 3), the frequency is 

and the theorem is proved. 
Consider, now, (2.1 a )  where &(w) is defined. A singularity in a"(@) means that there 

exists a non-trivial solution to the NavierStokes equation on a microscopic scale 
having the property that u = 0. This occurs if the front and back surfaces of the 
sample (at z = 0 and z = L) are sealed off so that no fluid can cross these boundaries. 
This guarantees that u(z = 0) = u(z = L) = 0 thus fulfilling the boundary condition 
(A 3). Because of the theorem, such a situation has a non-trivial solution for w only 
on the negative imaginary axis. Therefore, poles in a"@) occur only on the negative 
imaginary axis. 

Similarly ( 2 . l b )  shows that a pole of &) implies the existence of a non-trivial 
microscopic solution having the property that the macroscopic pressure gradient 
vanishes. On a microscopic scale, we imagine the front and back surfaces of the sample 
maintained in equilibrium with a reservoir at equilibrium, q, = 0. This guarantees 
that the macroscopic pressure drop across the sample is zero ; it also guarantees the 
boundary condition (A 3). Therefore any poles in &w) must occur on the negative 
imaginary axis. 

We have shown, then, that any poles or zeros in either Z(o) or E(o) must occur 
on the negative imaginary axis. To this point, it seems possible that there may be 
branch points in the lower half-plane other than on the negative imaginary axis. Let 
us suppose that w* is such a point. Let w1 and w, be two complex frequencies on either 
side of the branch cut associated with w? and ul(r) and u,(r) be the corresponding 
microscopic solutions, for the same boundary conditions. The meaning of a 'branch 
cut' is that these two solutions are distinct. Since, in reality w1 = w,, the function 
6u = ul-u, is a non-trivial solution to the Naviedtokes equations, (A l a ) ,  and 8u 
satisfies the surface condition (A 3), because the boundary conditions on ul, , cancel. 
The theorem proved above, however, shows that thisban happen only for w* on the 
negative imaginary axis. Therefore, any branch points in &(w) or k(w) must occur on 
the negative imaginary axis. 

Appendix B. Finite thermal conductivity in the solid phase 
In  $6 we neglected the possibility that heat could flow from the He I1 into the solid; 

in this Appendix we estimate the magnitude of this neglected effect. The issue does 
not arise for the first sound/fourth sound mode ((5.7) in the text) because there is 
no temperature variation associated therewith ; we have already assumed that the 
thermal expansion coefficient vanishes. If a finite value of the thermal expansion 
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coefficient is retained, Achiam & Bergman (1974) have explicitly shown that fourth 
sound, the low-frequency limit of (5.7), has a truly negligible attenuation due to 
thermal conduction into the solid. We consider, then, second sound propagating in 
a porous medium consisting of a periodic layering of slabs of fluid having width WHe 
and slabs of solid having width Wsol. We wish to investigate the effects that the finite 
thermal conductivity of the solid has on the speed and attenuation of the second 
sound mode. Accordingly, we neglect all attenuation mechanisms in the fluid except 
the thermal conductivity (Putterman 1974, pp. 126 ff.), K H ~ :  

pN 9 = -7 VP-p,sVT, 

a 
at 

V*(p.suN)+- (ps) = K ~ ~ V ~ T / T .  

The equation of motion in the solid is, of course, the heat equation 

where Csol is the volumetric heat capacity. The boundary conditions at the walls are 
continuity of temperature, 

and continuity of heat flux, 
THelWall = %ollWall> (B 3a) 

In (B 3a) we have explicitly ignored the Kapitza resistance (Achiam & Bergman 
1974); a finite value of the Kapitza resistance will act to further reduce the effects 
of the solid’s thermal properties on the second sound mode. 

It is straightforward to solve for the speed and attenuation of a mode propagating 
parallel to the layers. In the low-frequency limit (in which the wavelength of second 
sound in He I1 and the thermal wavelength in the solid are each larger than WHe. sol) 

the mode has a speed 

and a specific attenuation 

P = c; dcHe 

$cHe+(l-$)cSol’ 
(B 4 4  

where $ = WHe/[ WHe+ Wsol] is the porosity. The speed (B 4a) is only slightly altered 
from that of second sound in the bulk because the volumetric specific heats of solids 
are typically 2-3 orders of magnitude less then that of 4He. The attenuation is 
identical in form with the relevant contribution to that of second sound in bulk 4He 
but with a renormalized thermal conductivity and specific heat. The thermal 
conductivities of non-crystalline solids at these temperatures are comparable with 
that of 4He, namely 103-4 erg/(s cm K). This means that the additional attenuation 
of second sound due to conductivity in the solid is comparable with that in bulk 4He. 
Specifically, for frequencies less than lo4 Hz, the additional attenuation due to 
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thermal conduction in the solid is 1/& < Inasmuch as we are presupposing that 
all bulk attenuations are minor compared with that due to viscous shearing of the 
normal component (5.8), we are justified in neglecting this additional attenuation 
mechanism as well. 
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Note added in proof: We wish to call the readers attention to a recent article by A. N. 
Norris to be published in J .  Wave-Material Interactions in which he discusses some 
low-frequency properties vis-d-vis (3.12). 


